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1 Base specific damage probabilities

Nucleotide misincorporations observed at position i within a read are governed by four key parameters
the average length of overhangs (λ); nick frequency (ν), and cytosine deamination rates at both double
stranded regions (δd) and overhangs (δs). For the Markov chain (figure 1) we use the following order
of states:

Cstart, C to T, Single s., Double s.,Tend and Cend

with resulting transition probability matrix

P =



0 νi 0 0 0 1 − νi

0 0 λi 1 − λi 0 0
0 0 0 0 δs 1 − δs

0 0 0 0 δd 1 − δd

0 0 0 0 1 0
0 0 0 0 0 1


.

Since there are no self loops in the Markov chain, the support for the distribution of the states will
be at the end states for any initial distribution after the 3rd power of the transition probability matrix.
The initial distribution for the cytosines for this Markov chain will have this form

κ =
(
1 0 0 0 0 0

)
Then

(κP3)T =



0
0
0
0

νi (λi δs + δd (1 − λi))
1 − νi (λi δs + δd (1 − λi))


The base specific damage probabilities are derived as

pct(δd, δs, λ, ν, i) = νi (λi δs + δd (1 − λi))

pga(δd, δs, λ, ν, i) = (1 − νi) (λi δs + δd (1 − λi)) .

Here the νi and λi are defined in the following fashion

λi =

1 − i∑
k=0

(
k + r − 1

k

)
(1 − λ)rλk

 /2
νi ={Probability of C>T versus G>A substitution due to DNA damage

at position i}
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The position specific probabilities for the overhangs λi are defined in this fashion1 to get similar values
for the parameters as described by Briggs et al. (2007). In the case of double stranded protocol we
estimate νi with a smooth function using generalized additive model using

zi =
sC,T,i/dC,i

sC,T,i/dC,i + sG,A,i/dG,i
(1)

as a dependent variable and position as the predictor. For the single stranded protocol, the model
simplifies as we set νi = 1 for all i. Non-informative priors are used for the parameters, and parameter
estimation is carried out using MCMC (Hastings, 1970) with Gibbs sampling (Geman and Geman,
1984).

2 The mutation model

The mutation/sequencing error rate matrix QΘ for Θ is parametrized in a HKY (Hasegawa et al., 1985)
setup

QΘ(µ, ρ) = µ ·


− ρ · πc πg ρ · πt

ρ · πa − ρ · πg πt

πa ρ · πc − ρ · πt

ρ · πa πc ρ · πg −

 .
πa, πc, πg and πt refer to the base frequencies of the reference genome used for aligning the reads, µ is
the overall substitution frequency and ρ is the transversion / transitition bias.

3 mapDamage2.0 in the field of aDNA

We applied mapDamage2.0 on a collection of aDNA sequence datasets from a range of time periods,
source materials and environments (supplementary table S1). When BAM alignment files (Li et al.,
2009) were unavailable, mapping was carried out using raw sequences and corresponding reference
genome. The reads were first trimmed using AdapterRemoval v1.2 (Lindgreen, 2012) to remove
adapter sequences (allowing a mismatch rate of 1/3), trimming low-quality bases (Ns and bases with a
Phred score of 2) at read termini. Following (Green et al., 2010 and Reich et al., 2010), paired-ended
reads that overlapped with at least 11bp were collapsed into a single sequence. Non-overlapping
paired-ended reads and reads that were shorter than 25bp after trimming were discarded. The trimmed
reads were mapped to a reference using BWA (Li and Durbin, 2009), with mapping carried out without
the use of a seed-region (Schubert et al., 2012). Following mapping PCR duplicates were filtered
using MarkDuplicates from the Picard tool-kit2 and using a script kindly provided by Martin Kircher
to filter collapsed reads (FilterUniqueBAM.py3). Finally, the BAMs were realigned using the GATK
IndelRealinger tool (McKenna et al., 2010) to improve the local aligment around indels.

After alignment, mapDamage2.0 was used with default parameters with two exceptions: only the
forward end of the sequences was used and 20 bases from that end to be more comparable across a
wide range of datasets. In particular, some sequence data sets correspond to single end reads while
others were paired-end reads that showed significant overlap and could be collapsed. As the latter

1For clarity we use site specific probabilities for forward-only overhangs.
2http://picard.sf.net
3https://bioinf.eva.mpg.de/fastqProcessing/ for a SAM compatible version of this script
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(paired-ends) showed a much higher quality than the former (single-ends) and provided full-length
sequence information from DNA inserts (in contrast to single-end sequencing which might not reach
the insert ends) we decided to consider only the first 20 base pairs from the 5’ end. With this con-
servative approach, G→A misincorporations rates at sequencing ends will not be under-estimated due
to the presence of inserts only partially sequenced. The following bash command shows the options
used for the dataset.

mapDamage −−length 100 −−seq−length 20 −−forward −i alignment . bam −r reference . fa

For the datasets from Bon et al. (2012) and Miller et al. (2012) we opted for taking the reverse end
since the molecular protocol used for preparing and amplifying libraries resulted in the typical fre-
quency of G→A substitutions at sequencing ends but not at sequencing starts. To be explicit about
a potential source of bias, using the reverse end of the single ends in Bon et al. (2012) could down-
wardly bias the damage estimates. To account for this peculiarity a minor change was applied to the
preceding bash command.

mapDamage −−length 100 −−seq−length 20 −−reverse −i alignment . bam −r reference . fa

To avoid problems with low quality sequences from the Miller et al. (2012) dataset we discarded
merged reads if one of the paired end was of low quality. More specifically, we removed collapsed
reads using a minimum base quality threshold (Phred based) for the last 3’ nucleotide: 40 for read
length ≤ 101 bp and 38 for read length ≥ 101 bp. Further, as the reference genome for the polar bear
(Ursus maritimus) is still at draft stage (Li et al., 2011), we restricted the analysis to contigs over
10,000 bases.

The distribution of cytosine deamination rates between double- and single-strand regions was
estimated by drawing (50,000 times) from the posterior conditional distributions for δd and δs then
calculating the ratio. The mean of the distribution of calculated ratios is reported in supplementary
table S1 as column δd/δs.

Supplementary table S1: Parameter posterior means (δd, δs, λ, ρ, µ and δd/δs) for various datasets.
Radiocarbon dating or indirect age estimate are in years from the present day (BP). The column
Spe. indicates which species was used for the alignment with the following abbreviations: HS Homo
sapiens, CC Crocuta crocuta spelaea, MC Mammuthus columbi, DG Dinornis giganteus and UM
Ursus maritimus. Ref. column is the reference used for mapping: P is the Yersinia pestis pPCP1
plasmid, M and N stand for the mitochondria and nuclear genomes of the species considered. Samples
that were realigned are marked by an asterisk in the id column.

Id δd δs λ ρ µ δd/δs Spe. Ref. Art. Nr. of seq. Radiocarbon date
BRA1 0.024 0.519 0.327 0.063 0.009 0.050 HS M 22 720 7,000
BRA2 0.020 0.521 0.301 0.353 0.009 0.042 HS M 22 250 7,000
E520* 0.031 0.453 0.193 0.049 0.007 0.070 HS M 24 5,261 672
E521* 0.033 0.597 0.289 0.024 0.013 0.055 HS M 24 25,736 672
E522* 0.028 0.507 0.237 0.043 0.013 0.055 HS M 24 21,039 672
E523* 0.018 0.454 0.244 0.033 0.008 0.040 HS M 24 4,893 672
E524* 0.017 0.486 0.283 0.025 0.009 0.036 HS M 24 17,381 672
E525* 0.019 0.725 0.258 0.031 0.013 0.026 HS M 24 6,048 672
SLVi33.16 0.031 1.000 0.235 0.102 0.054 0.031 HS M 8 113,700 38,310
SLVi33.25 0.023 0.997 0.276 0.138 0.050 0.023 HS M 8 9,229 /

SLVi33.26 0.027 0.998 0.239 0.088 0.050 0.027 HS M 8 27,752 /
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SLFeld1 0.021 0.821 0.392 0.067 0.054 0.027 HS M 8 251 39,900
SLMez1 0.019 0.856 0.352 0.121 0.049 0.023 HS M 8 5,093 65,000
SLSid1253 0.034 0.976 0.190 0.138 0.047 0.035 HS M 8 277 3,8790
Ajv52 0.118 0.777 0.255 0.137 0.014 0.152 HS M 25 2,848 4,360-4,005
Ajv70 0.082 0.587 0.279 0.050 0.019 0.143 HS M 25 2,391 4,360-4,005
Gok4 0.036 0.570 0.205 0.327 0.011 0.065 HS M 25 816 4,971-4,871
Ire8 0.114 0.636 0.267 0.036 0.026 0.181 HS M 25 2,107 4,280-3,850
WB16A 0.025 0.813 0.251 0.631 0.053 0.032 HS M 11 10,332 727-712
WB18 0.055 0.768 0.250 2.766 0.014 0.074 HS M 11 11,880 727-712
WB1 0.047 0.631 0.204 1.388 0.009 0.075 HS M 11 12,806 727-712
WB21 0.059 0.852 0.219 1.162 0.028 0.070 HS M 11 39,860 727-712
Ajv52 0.077 0.688 0.247 0.496 0.019 0.111 HS N 25 859,548 4,360-4,005
Ajv70 0.053 0.651 0.344 0.484 0.017 0.082 HS N 25 1,307,016 4,360-4,005
Gok4 0.021 0.630 0.363 0.575 0.018 0.033 HS N 25 1,058,571 4,971-4,871
Ire8 0.043 0.635 0.270 0.639 0.019 0.067 HS N 25 562,685 4,280-3,850
BRA1 0.009 0.230 0.292 0.565 0.009 0.038 HS N 22 728,160 7,000
BRA2 0.007 0.230 0.236 0.502 0.010 0.029 HS N 22 364,258 7,000
SLVi33.16 0.021 1.000 0.302 0.679 0.016 0.021 HS N 8 32,784,524 38,310
SLVi33.25 0.018 1.000 0.370 0.718 0.016 0.018 HS N 8 25,813,140 /

SLVi33.26 0.023 1.000 0.336 0.646 0.013 0.023 HS N 8 27,207,294 /

SLFeld1 0.025 0.995 0.278 0.663 0.029 0.025 HS N 8 43,863 39,900
SLMez1 0.019 1.000 0.299 0.644 0.016 0.019 HS N 8 1,261,335 65,000
SLSid1253 0.013 0.999 0.263 0.678 0.021 0.013 HS N 8 48,537 38,790
E520* 0.011 0.804 0.503 0.152 0.002 0.014 HS P 24 2,983 672
E521* 0.010 0.625 0.285 0.169 0.005 0.017 HS P 24 3,804 672
E522* 0.015 0.441 0.270 48.326 0.000 0.034 HS P 24 2,532 672
E523* 0.004 0.533 0.333 0.158 0.002 0.007 HS P 24 1,862 672
E524* 0.010 0.769 0.423 0.127 0.003 0.014 HS P 24 3,016 672
E525* 0.010 0.813 0.429 1.689 0.001 0.012 HS P 24 1,240 672
CC8* 0.003 0.997 0.318 0.968 0.002 0.003 CC M 2 11,266 22,700-22,480
CC9* 0.005 0.997 0.316 1.362 0.005 0.005 CC M 2 22,563 22,700-22,480
Hunt* 0.015 0.063 0.174 0.095 0.021 0.364 MC M 5 7,066 11,220
Moa7 0.016 0.213 0.297 0.135 0.011 0.091 DG M 1 878 1,175
Moa9 0.027 0.281 0.260 0.074 0.011 0.099 DG M 1 4,032 988
polar* 0.031 0.701 0.223 1.315 0.013 0.044 UM M 19 15,472 110,000-130,000
polar* 0.022 0.739 0.253 1.147 0.015 0.030 UM N 19 3,844,349 110,000-130,000

Supplementary table S2: Parameter posterior means and running times (in min) for running mapDam-
age2.0 on the ancient plague dataset from Schuenemann et al., 2011.

Id Nr. of seq. Time δd δs λ ρ µ δd/δs

E520 5,261 16 0.031 0.453 0.193 0.049 0.007 0.070
E521 25,736 15 0.033 0.597 0.289 0.024 0.013 0.055
E522 21,039 16 0.028 0.507 0.237 0.043 0.013 0.055
E523 4,893 14 0.018 0.454 0.244 0.033 0.008 0.040
E524 17,381 17 0.017 0.486 0.283 0.025 0.009 0.036
E525 6,048 17 0.019 0.725 0.258 0.031 0.013 0.026

5



Supplementary table S3: Rank correlation between age from radiocarbon dating and parameter pos-
terior means. The asterisk is on values in the p-val column which are lower than 0.05. No correction
for multiple testing was applied.

p-val. Spearman ρ
δd 0.75908 0.04816
δs 0.00349* 0.43575
λ 0.89471 -0.02079
ρ 0.06141 0.28767
µ 0.00024* 0.53268

3.1 Comparison to other tools

The only implemented statistical model capable of inferring DNA damage parameters is the Briggs-
Johnson model described in Briggs et al. (2007) to the best of our knowledge. We restricted our
comparison to only a subset of the datasets presented in supplementary table S1 (namely, the dataset
from Green et al., 2010 and Schuenemann et al., 2011) as the Briggs-Johnson program only works for
the DNA library building procedure from Meyer and Kircher, 2010.

We first measured the difference in performance of the two methods by randomly selecting a
subset of reads from SLVi33.16 (supplementary table S1) at each nuclear chromosome (X, Y and
chr. 1 to chr. 22). Various sizes for subsets were considered (50, 200, 350, 500, 750, 1,000, 1,500
and 2,000 reads per chromosome). Given the extensive running time of the Briggs-Johnson model,
only a sub-sample of total 12,000 reads (500 reads from each chromosome) was considered if the
dataset contained more than 40,000 reads. Finally, mapDamage2.0 was restricted to the Jukes-Cantor
mutation model (with option –jukes-cantor while the default is HKY) in order to match the Briggs-
Johnson program. The same system setup was used for running both programs (AMD Opteron(TM)
Processor 6276, 2.3 GHz).

The difference in performance for the methods is striking (see supplementary figure S1), with the
summary model approach in mapDamage2.0 outcompeting the Briggs-Johnson model by several or-
ders of magnitude in terms of running-time. We found that using the Briggs-Johnson model on the
full sequence dataset from the Neandertal SLVi33.16 sample (32,784,524 hits in the original bam file)
would be virtually impossible as the analysis would run over 5 years. However, the same analysis took
no more than two hours with mapDamage2.0, including rescaling. This demonstrates that mapDam-
age2.0 is capable of analyzing large sequence datasets, such as those generated by high-throughput
sequencing platforms.

The parameter estimates for the different models are provided in supplementary figures S2 and
S3 were found to be consistent, illustrating that the underlying simplifying assumptions of mapDam-
age2.0 provide reliable results. We note however, a significant departure in posterior estimates for µ,
with mapDamage2.0 providing greater values than the Briggs-Johnson model. This is most likely to
the fact that we restricted mapDamage2.0 to the 20 first bases (while the full read length was used with
the Briggs-Johnson method) at sequencing starts. This region is more prone to misalignments e.g. in-
dels are very difficult to align correctly close to the ends. Finally, the position specific nick frequency
is estimated with a generalized additive model in mapDamage2.0 (see equation 1) consequently the
nick frequency parameter in the Briggs-Johnson model is incomparable with our model.
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Supplementary figure S3: mapDamage2.0 and the Briggs-Johnson model (MLE) parameter estimate
comparison, using downsampled subsets from Green et al., 2010 and Schuenemann et al., 2011. Hor-
izontal error bars are the asymptotic χ2 confidence intervals (95%) and the vertical error bars are the
quantiles (2.5% and 97.5%) for the estimated posterior distribution.
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template meanwhile the y-axis is the subsitution frequency. See Schuenemann et al. (2011) for more
detailed information regarding the original data.
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Supplementary figure S6: Sample E522, 95% posterior predictive intervals for the substitution fre-
quencies and the solid line is the empirical frequency. The x-axis is the position from the 5’ end of the
template meanwhile the y-axis is the subsitution frequency. See Schuenemann et al. (2011) for more
detailed information regarding the original data.
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Supplementary figure S7: Sample E523, 95% posterior predictive intervals for the substitution fre-
quencies and the solid line is the empirical frequency. The x-axis is the position from the 5’ end of the
template meanwhile the y-axis is the subsitution frequency. See Schuenemann et al. (2011) for more
detailed information regarding the original data.
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Supplementary figure S8: Sample E524, 95% posterior predictive intervals for the substitution fre-
quencies and the solid line is the empirical frequency. The x-axis is the position from the 5’ end of the
template meanwhile the y-axis is the subsitution frequency. See Schuenemann et al. (2011) for more
detailed information regarding the original data.
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Supplementary figure S9: Sample E525, 95% posterior predictive intervals for the substitution fre-
quencies and the solid line is the empirical frequency. The x-axis is the position from the 5’ end of the
template meanwhile the y-axis is the subsitution frequency. See Schuenemann et al. (2011) for more
detailed information regarding the original data.
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4 Rescaling of base quality scores

The Aboriginal aDNA sequence analysis (Rasmussen et al., 2011) was carried out using reads that
were trimmed for the first and last three nucleotides prior mapping in order to reduce the effect of
DNA damage related nucleotide misincorporations. Here we used a model based approach which
aligns them untrimmed against the reference and then downscales likely damaged positions in the
aligned reads.

Similar alignment pipeline as Rasmussen et al. (2011) was used for the untrimmed reads and
mapDamage2.0 was used to rescale base qualities in the BAM file. Only the 20 first bases were
considered from each end, the position dependent nick probability was assumed to be 1 at the 5’ end
and 0 at the 3’ end, the following bash command shows the exact usage of mapDamage2.0.

mapDamage −i Aborigine . bam \

−r hg19 . fa \

−d AboOut \

−−verbose \

−−rescale \

−−length=100 \

−−seq−length=20 \

−−fix−nicks

Fixing the nick probability in this fashion provided a decent fit for low damage datasets. Note the
–rescale flag which outputs the rescaled BAM file to the output folder. For comparison the variant
sites were filtered before and after rescaling according to the pipeline by Rasmussen et al. (2011)
(supplementary table S4), kindly provided by Simon Rasmussen.

Supplementary table S4: SNP calling at chromosome 10 for the ancient Aboriginal Australian (Ras-
mussen et al., 2011).

Metric Before rescaling After rescaling
Total nr. of SNPs 23,455 22,025
SNP-db overlap 19,393 (82.7%) 18,253 (82.9%)
Not present in SNP-db 4,062 3,772
SNPs filtered out - 1,586
SNPs kept - 156

To explore in greater detail the nature of the variants that were removed in the rescaling process,
we counted the reference and alternative alleles combinations from the VCF file (supplementary table
S5). As expected from the post-mortem deamination process, the vast majority (98.8%) of the variants
filtered corresponded to situations where an C (G) was found in the reference and a T (A) was observed
in the sequence reads, significantly different (p < 2.2 ·10−16, Fisher’s exact test) from the frequency in
db-SNP (38.2%). One typical example is provided in supplementary figure S10 (at position 1,688,405
in chromosome 10), where the minor allele frequency (MAF) for this position is low (6/20) but still
above the MAF frequency cutoff in the filtering pipeline described by Rasmussen et al., 2011 and
therefore contributes to the final genotype calls. While DNA damage is likely a contributing factor
(especially for Read20 and Read21 as both show C→T misincorporation at the sequencing starts) we
must caution that the variant site could still correspond to a true polymorphism or a misincorporation
due to a repeat structure in the genome, misalignment, sequencing errors and other sources of bias.
Increasing the sequencing effort and/or using specific molecular tools limiting the impact of post-
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mortem cytosine deamination (e.g. Briggs et al., 2009) could provide further tests for the validity of
this supposedly variable site.

We counted the occurrences of C→T mismatches found at Cs located in a dinucleotide context
(CpA, CpC, CpG and CpT), and the total of number of the same dinucleotides in the alignment against
the reference. We found elevated frequency of C→T at CpG compared to other dinucleotide contexts
(ca. 0.0098 vs 0.0029, respectively, ie. ≈3.4X difference). This could suggest that our approach
is over-aggressive and corrects more often than it should for T variants found in a CpG context.
Alternatively, this difference could originate from the observed biased distribution of CpG towards
read starts (data not shown; the %CpG in the reference genome for the first 20 nucleotidic positions
within reads was found to be 2X greater than for the last 20 nucleotidic positions). This suggests that
the position specific CpG composition of the reads could account for >58% of rescaling performed
at sequencing starts, leaving a minority of cases where over-aggressive rescaling is performed. A
simple partition scheme, where the original BAM file is splitted into two or more sub data sets (eg.
CpG Islands vs no CpG Islands; read classes of %CpG etc), could be further used to account for the
specificities of any region of interest during rescaling.

Ref AGGTCTATCCACATGGCCCAAGTGCTCTGAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read1 AGGTCTATCCACATGGCCCAAGTGCTCTGAAAATGA........................
Read2 AGGTCTATCCACATGGCCCAAGTGCTC.................................
Read3 AGGTCTATCCACATGGCCCAAGTGCTCTGAAAACGATGTG....................
Read4 AGGTCTATCCACATGGCCCAAGTGCTCTGAAAACGATG......................
Read5 AGGTCTATCCACATGGCCCAAGTGCTCTGAAAATGATGTGTCCTGGGGTCCAGCCTAGC.
Read6 .GGTCTATCCACATGGCCCAAGTGCTCTGAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read7 ..GTCTATCCACATGGCCCAAGTGCTCTGAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read8 ...TCTATCCACATGGCCCAAGTGCTCTGAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read9 .....TATCCACATGGCCCAAGTGCTCTGAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read10 ......ATCCACATGGCCCAAGTGCTCTGAAAATGATGTGTCCTGGGGTCCAGCCTAGCT
Read11 ..........ACATGGCCCAAGTGCTCTGAAAATGATGTGTCCTGGGGTCCAGCCTAGCT
Read12 .............TGGCCCAAGTGCTCTGAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read13 ....................AGTGCTCTGAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read14 .....................GTGCTCTGAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read15 ..........................CTGAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read16 ............................GAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read17 ............................GAAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read18 .............................AAAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read19 ..............................AAACGATGTGTCCTGGGGTCCAGCCTAGCT
Read20 ...............................AATGATGTGTCCTGGGGTCCAGCCTAGCT
Read21 .................................TGATGTGTCCTGGGGTCCAGCCTAGCT
Read22 ........................................TCCTGGGGTCCAGCCTAGCT
Read23 ............................................GGGGGCCAGCCTAGCT
Read24 ...................................................AGCCTAGCT

↑
Position 1688405

Supplementary figure S10: Alignment region around the example variant site (position 1,688,405,
chromosome 10 and build hg19) that was filtered out during the rescaling.
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Supplementary table S5: Type of variants filtered in the ancient Aboriginal Australian rescaling (Ras-
mussen et al., 2011).

Variant type Frequency
C→T 786
G→A 781
Others 19

5 Usage documentation

Let assume the user has a BAM file called seq.bam aligned against the reference in ref.fa, then the
minimal options supplied to mapDamage would be the following4

mapDamage −i seq . bam −r ref . fa

The output will be in the folder result_seq, the directory name can be changed by the -d option. By
default, the following files will be created in this folder.

3pGtoA_freq . txt
5pCtoT_freq . txt
dnacomp_genome . csv
dnacomp . txt
Fragmisincorporation_plot . pdf
Length_plot . pdf
lgdistribution . txt
misincorporation . txt
Runtime_log . txt
Stats_out_MCMC_correct_prob . csv
Stats_out_MCMC_hist . pdf
Stats_out_MCMC_iter . csv
Stats_out_MCMC_iter_summ_stat . csv
Stats_out_MCMC_post_pred . pdf
Stats_out_MCMC_trace . pdf

We suggest a quick look at Fragmisincorporation_plot.pdf and Length_plot.pdf to check if there are
any problems in sequencing or mapping. The next step is to assess the fit by checking if the empiri-
cal substitution frequencies are generally contained in the posterior predictive distribution intervals. If
confirmed, try to detect any evidence of non-equilibrium in the stochastic process by looking at worry-
ing trends in the Stats_out_MCMC_trace.pdf file. More rigorous approach, is to run mapDamage2.0
multiple times and use convergence tests5 on the output in Stats_out_MCMC_iter.csv from parallel
chains. The acceptance ratio in Stats_out_MCMC_iter.csv should be about 0.22 but some deviation
(0.1-0.3) is acceptable. To improve the fit, increasing the numbers in the following options could be
useful.

mapDamage −i seq . bam −r ref . fa −−rand=30 −−burn=10000 −−adjust=10 −−iter=50000

Where –rand is the number of starting points in the likelihood estimation, –burn is the number of
iterations in a burning period, –adjust is the number of burning periods and –iter is the number of

4A more detailed documention for the parameters is provided in the README.md file.
5For example the one presented by Gelman and Rubin, 1992.
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iterations in the samples used for the parameter estimation. Note that the total number of MCMC
iterations is burn · adjust + iter.

If the sample is from a single strand library build preparation as described in Meyer et al., 2012
then we can run the mapDamage using the following command.

mapDamage −i seq . bam −r ref . fa −−single_stranded

You should see elevated C→T substitutions frequency at both ends in the posterior predictive plot
with this option. If using the single ends instead of merged paired ends then we suggest using only
the forward part of the sequences.

mapDamage −i seq . bam −r ref . fa −−forward

This could also be addressed by allowing for difference in the mean overhangs lengths at the 5’ and
3’ end.

mapDamage −i seq . bam −r ref . fa −−diff−hangs

If you are satisfied with the fit then you can append the rescale option to make a rescaled BAM file in
the output folder6.

mapDamage −i seq . bam −r ref . fa −−rescale

You can run the statistical part without reparsing the BAM file. This is useful for convergence tests or
model tweaking.

mapDamage −d valid_result_folder −−stats−only

6Depending on the dataset it could be worthwhile to explore possible sources of rescaling bias such as heterogeneity in
diversity or context dependent sequencing errors, by bipartioning the BAM file and explore the difference in the scaling for
the two parts.
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